وبلاگ

تاریخچه ریاضی

تاریخچه ریاضی

مصریان باستان، بیش از ۵ هزار سال پیش، برای اندازه‌گیری و نقشه‌برداری زمین و ساختن اهرام با دقت بسیار بالا، از حساب و هندسه استفاده می‌کردند. علم حساب با اعداد و محاسبه سر و کار دارد. در حساب، چهار عمل اصلی عبارتند از: جمع، تفریق، ضرب و تقسیم. هندسه علم مطالعه خط‌ها، زاویه‌ها، شکل‌ها، و حجم‌ها است. یونانی‌هایی چون اقلیدس، حدود ۲۵۰۰ سال قبل، بیشتر قوانین اصلی هندسه (قضایای هندسه) را تعیین کردند. جبر نوعی خلاصه‌نویسی ریاضیات است که در آن برای نشان دادن کمّیت‌های نامعلوم، از علائمی چون x و y استفاده می‌شود. این علم را نیز دانشمندان ایرانی، حدود ۱۲۰۰ سال قبل توسعه دادند. حساب، هندسه و جبر، پایه‌های ریاضیات هستند.

ریاضیات نوعی زبان علمی است. مهندسان، فیزیکدانان، و سایر دانشمندان، همگی از ریاضیات در کارهایشان استفاده می‌کنند. سایر کارشناسان که به مطالعه اعداد، کمّیت‌ها، شکل‌ها و فضا به‌شکل محض علاقه دارند، ریاضیات محض را به کار می‌گیرند. نظریه اعداد که شامل مطالعه اعداد درست و نحوه عمل آنهاست، شاخه‌ای از ریاضیات محض به شمار می‌آید. در دنیای جدید، ریاضیات یکی از عناصر کلیدی علوم الکترونیک و رایانه به‌شمار می‌رود.
مجموعه، رابطه، تابع، عمل، گروه، میدان، عدد، اعداد طبیعی، اعداد حسابی، اعداد صحیح، اعداد اول، اعداد مرکب، اعداد گویا، اعداد گنگ، اعداد حقیقی، اعداد مختلط، اعداد جبری، عدد پی، عدد ای، چهارگان‌ها، هشت‌گان‌ها، شانزدگان‌ها، اعداد پی-ادیک، اعداد فوق پیچیده (Hypercomplex numbers)، اعداد فوق حقیقی (Hyperreal number)، اعداد فراواقعی (Surreal numbers)، بینهایت، اعداد ترتیبی، اعداد اصلی، ثابت‌های ریاضی، پایه
Elliptic curve simple.png Group diagram d6.svg
جبر مجرد نظریه اعداد نظریه گروه‌ها
توپولوژی نظریه مدول‌ها نظریه ترتیب
جبر مجرد، نظریه اعداد، هندسه جبری، نظریه گروه‌ها، مونوئیدها، آنالیز ریاضی، آنالیز تابعی، توپولوژی، جبر خطی، نظریه گراف، جبر عمومی، نظریه مدول‌ها، نظریه ترتیب
توپولوژی هندسه مثلثات هندسه دیفرانسیل هندسه برخال‌ها،توپولوژی، هندسه، مثلثات، هندسه جبری، هندسه دیفرانسیل، توپولوژی دیفرانسیل، توپولوژی جبری، جبر خطی، هندسه برخال‌ها، متری
حساب حسابان حساب برداری آنالیز ریاضی
معادلات دیفرانسیل سیستم‌های دینامیکی نظریه آشوب
حساب، حسابان، حساب برداری، آنالیز ریاضی، معادلات دیفرانسیل، سیستم‌های دینامیکی، نظریه آشوب، فهرست تابع‌ها

پایه‌ها و روش‌های ریاضیات
فلسفه ریاضیات، شهودگرایی، ساخت‌گرائی، مبانی ریاضیات، نظریه مجموعه‌ها، منطق نمادی، نظریه مدل، نظریه رسته‌ها، منطق ریاضی، ریاضیات معکوس، جدول نمادهای ریاضی
برتراند راسل زمانی که دربارهٔ روش بُنداشتی (اصل موضوعی) سخن می‌گفت که در آن برخی ویژگی‌های یک ساختار (که چیزی از آن نمی‌دانیم) فرض می‌شود و پیامدهای این فرض از راه منطق نتیجه‌گیری می‌شود گفت:

ریاضیات را می‌توان رشته‌ای تعریف کرد که در آن نه معلوم است از چه سخن می‌گوییم و نه می‌دانیم آنچه می‌گوییم صحت دارد

نوشتن دیدگاه

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *

شما ممکن است از این برچسب ها و خصوصیات HTML استفاده کنید:

<a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>